
AIMPLAS CAPACITIES IN HYDROGEN

AIMPLAS, Technological centre of plastics

Research Centre

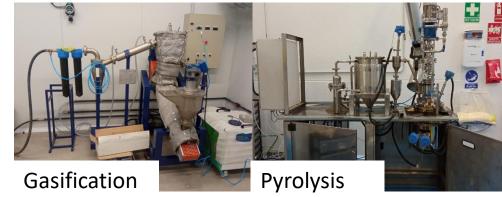
Natalia Pons npons@aimplas.es, 600078939

H₂ Production

Storage

Advanced materials

H₂ Use

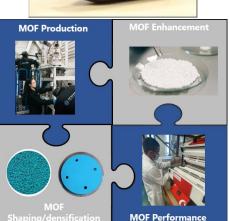

H₂ Production

Biomass

Plastic waste

- Pretreatment
- Catalysts synthesis
- In-situ capture of CO₂ (Sorption Enhanced process)

Forest Waste



H₂: 42-54%

Compression H2

Tanks/pipes/Porous materials

H₂ Storage

Liquid H2

Foams with low conductivity

Q (molm/(m²sPa) at 105 bar 1,040·10⁻¹⁶-9,625·10⁻¹⁷

Foams with conductivity <0,03 W/mK

Carriers

LOHC, MeOH,NH3, FORMIC

Synthesis of catalysts for hydrogenation/dehydrogenation

H₂ Uses

Synthesis of renewable synthetic fuels by different technologies

High Pressure Batch Reactors

Autoclaves 100mL x 4

- Magnetic stirring
- $T_{\text{max}} = 250 \, ^{\circ}\text{C}$
- $P_{max} = 150 bar$

Autoclave 300 mL

- Magnetic stirring
- T_{max} = 360 °C
- $P_{\text{max}} = 344 \text{ bar}$

Multireactor (8 x 7 mL)

- Magnetic stirring
- $-T_{max} = 250 \, {}^{\circ}\text{C}$
- $P_{max} = 100 \text{ bar}$

High Pressure Flow Reactors

- T_{max}: 500°C P_{max}: 60 bar

Conventional Thermal Heater

- Max flow: 100 ml/min
- 4 inlet gases
- Condensation pot
- HPLC pump for continuous liquid addition

Microwave reactor

- T_{max}: 500°C - P_{max}: 60 bar
- Max flow: 100 ml/min
- 4 inlet gases
- Condensation pot
- HPLC pump for continuous liquid addition

Electrochemical Flow Reactor

- 2 Filter/Press reactor in serial configuration
- Impedance module: 10μV 7,5 V
- Potensiostat/Gavalnostat module of 20 V. from 50µA to 5A
- -CO2 conversion to: CH4, N2, CO, C2H4
- -Flow range: 0-100 ml/min

Photochemical Reactor

- LED PCBs modules
- Light emission centered λ=365nm

(A) External reactor photo (B) Internal Reactor photo

2. Topics of interest in calls 2025

Topic	Experience and Contribution
HORIZON-JU-CLEANH2-2025-01-01: Improvements in lifetime and cost of low	Electrocatalysts and
temperature electrolysers by	electrodes with
introducing advanced materials and components in stacks and balance of plant	advanced materials
	Advanced materials for
HORIZON-JU-CLEANH2-2025-02-02: Development of cost effective and high-capacity	H2 storage. Porous
compression solutions for hydrogen	materials, materials for
	tanks
HORIZON-JU-CLEANH2-2025-02-03: Demonstration of scalable ammonia cracking technology	Catalysts for ammonia cracking